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Potential of Semiconductor Sensor Arrays for the Origin
Authentication of Pure Valencia Orange Juices
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Sensor array is a new method used in aroma analysis. This technique was employed for the
differentiation of 49 pure Valencia orange juices from 5 different origins representative of the main
culture areas of citrus according to their volatile organic fractions. An experimental design was
used to set analytical factors, which control the generation of the static headspace; therefore, the
preliminary optimization of analytical conditions allows the evaluatation of the potential of such
an apparatus in this kind of survey. Results obtained were then statistically treated by multivariate
analyses such as principal component analysis and factorial discriminant analysis. Sensor arrays
performed a good discrimination of the whole juices in classing them according to the origin of
Valencia oranges used. A calibration of the sensors was then performed to build a database aiming
to classify the juices according to the origin of oranges involved. New supplementary samples were
then analyzed to assess the efficiency of the database. This technique coupled with other ones such
as high-pressure liquid chromatography and gas chromatography may be a new tool for the
investigation of adulteration detection due to the authentication of the origin of raw materials
employed in the orange juice processes.

Keywords: Orange juice; origin; adulteration, authentication, sensor array; volatile organic
compounds; static headspace; optimization of analysis; multivariate analysis; pattern recognition;

calibration of the sensors

INTRODUCTION

The association of one or several arrays of electronic
chemical sensors with partial specificity to an appropri-
ate system of pattern recognition based on statistical
treatments enabled the conception of instruments known
as “electronic noses” (1). The main technologies of
sensors that equip this kind of apparatus are the
following: metal oxide semiconductor sensors (Mox), gas
sensitive field effect transistors (GasFETs or MosFETS),
conducting polymers, acoustic wave devices such as the
buck acoustic waves (BAW) often referred to as quartz
crystal microbalance (QCM), and surface acoustic wave
transducers (SAW) (2). Contrarily to the classical tech-
niques used in aroma analysis such as headspace gas
chromatography combined or not with mass spectrom-
etry, this new method does not identify the composition
of volatile compounds but gives a fast comparative
measure of patterns of odors, representative of com-
pounds disengaged by a substratum (3). In the case of
Mox sensors, interactions with these kinds of com-
pounds induce mechanisms of adsorption and desorp-
tion, taking place on the surface of the sensors and
provoking the modification of its electrically measurable
properties by a variation of resistance versus time (4).

The domains of utilization of electronic noses concern
principally the food industries (5, 6) but also the
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industries of tobacco, some cosmetics industries, and the
automotive industry (7). In the case of beverages, this
technology has already been applied for the authentica-
tion of wines and the discrimination of fruit juice and
coffees. It permits the detection of contaminants such
as the presence of diacetyl in orange juices or trichlo-
roanisoles in wines (8). A few studies relative to orange
juices were found in the literature (9). Bazemore dif-
ferentiated some orange juices from Florida according
to the harvest times of oranges and of their pasteuriza-
tion level with a system equipped with 12 polymer
sensors (10).

The aromatic fraction of orange juices is essentially
composed of alcohols, aldehydes, esters, and hydrocar-
bons, one of which is limonene, the major compound
(11). During these past years, industries have developed
new types of products in the domain of the fruit juice.
The consumer of today has available a range of innova-
tive products divided into three main branches: bever-
ages known for their specific health advantages, fruit
juices of superior quality (not from concentrate, from
certified origin fruits), and ready-to-drink products with
all-point distribution (12). As for orange juices, the
notion of quality is closely bound to the geographical
origin of the oranges involved. It is therefore necessary
to create new analytical methods revealing the origin
of the processed raw products.

A recent survey showed that high-performance liquid
chromatography (HPLC) allows the geographical rec-
ognition of some orange juices due to the detection of
some chemical compounds in their composition (13).
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Table 1. Sensors of the Fox3000 Electronic Nose?

sensor P T
sensor class type type description
1 Mox T30/1 polar compounds, ethanol
2 Mox P10/1 hydrocarbon

Mox  P10/2
Mox  P40/1

3 methane and propane
4 fluoride, chloride, aldehydes
5 Mox T70/2 aromatic compounds
6 Mox PA2 alcohol, solvents
7 Mox  P30/1 polar compounds, ethanol
8 Mox  P40/2 fluoride and chloride
9 Mox  P30/2 fluoride, chloride, aldehydes
10 Mox P70/1 volatiles from carbonized compounds
11 Mox T40/1 fluoride, chloride, aldehydes
12 Mox TA2  organic solvent

aThese 12 sensors are not selective but known to be more
sensitive to chemical products belonging to chemical families or
kinds of compounds cited in the table.

Some encouraging results were also given by some
isotopic analyses, thanks to the SNIFNMR method
(nuclear magnetic resonance applied to specific natural
isotopic fractions) (14). These techniques are appreciable
but do not always permit an accurate analysis of the
aroma, which often results from mechanisms of complex
interaction between the chemical compounds, which
compose it. The analysis by sensors avoids the need for
long presampling contrary to the other techniques and
consequently preserves the chemical, physical, and
organoleptic properties of the orange juices practically
intact. The objective of this paper is to show the
potential of a sensor array for origin recognition. We
have to constitute new kinds of databases on pure
Valencia oranges juice, the most widely grown variety
in the world (15). The pure Valencia orange juices
analyzed came from five different origins, representative
of different producer countries or states: Israel, Spain,
Belize, Cuba, and Florida (USA). These regionscountries
belong to the two main climatic areas of culture of citrus
fruits: the Mediterranean and tropical areas.

MATERIALS AND METHODS

Samples. Studies were carried out on 49 pure Valencia
orange juices of 5 different origins; the samples were distrib-
uted as follows: Israel, 12; Spain, 11; Belize, 8; Florida, 9;
Cuba, 9. All of these juices came from oranges that were
harvested during two periods: 1996—1997 and 1997—-1998.
These pure industrial juices worked out according to processes
of manufacture conforming with the standard norms: washing,
selection of the fruits, calibration, extraction in line, FMC
process (Food Machinery Corp., Chicago, IL), pasteurization,
and conditioning. The FMC process allows limited contact
between the orange juice and the skin of the fruit during the
extraction, so the presence of essential oils such as limonin is
limited in the juice. Furthermore, oranges from different sizes
can be used in this process.

Reagents. The carrier gas used is synthetic dry air of FID
quality. The deionized water introduced in the air-conditioning
unit, an ACU 500 (Alpha Mos, Toulouse, France), is of HPLC
grade. The following compounds have been used as standards
for the calibration of sensors: guaiacol, o-pinene, furfural,
limonene, ethyl butyrate, and y-butyrolactone. Some of these
products were diluted in propylene glycol. All of these chemi-
cals were of analytical grade (Sigma-Aldrich).

Sensor Array. The analytical system is composed of the
following modules: a Fox3000 electronic nose (Alpha Mos),
which includes 2 rooms of 12 Mox sensors (Table 1) (each room
is a pack of 6 sensors allowing one to update the system up to
3 rooms with other kinds of sensors); electronic devices and a
mass flow meter; an ACU humidifier 500 (Alpha Mos), an
automatic headspace sampler HS-50 (CTC Analytics), and a
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Table 2. Summary of Dilutions of Pure Standards for the
Calibration of Sensors

concn injection

compound? solvent (%, viv) vol (uL)
limonene none pure (10 uL) 200
ethyl butyrate propylene glycol  0.02 200
a-pinene none pure (10 ulL) 200
guaiacol none pure (100 uL) 200
y-butyrolactone  none pure (500 uL) 200
furfural none pure (20 uL) 200

a8 Chemical compounds used as standards for the calibration of
the sensors.

Table 3. Range of Influent Factors

factor2 level -1 level 0  level +1P
X1, temp (°C) 40 50 60
X2, generation time (min) 5 10 15
X3, injection vol (uL) 150 225 300

2 The three influent factors studied concerning the headspace
generation. ® Range of factors set at three levels: —1, 0, +1.

personal computer (Compaq Deskpro) used for the acquisition
data realized with the Fox3000 5.0 software (Alpha Mos).

Experimental Procedure. The volatile organic fractions
of pure Valencia orange juices were analyzed with the Fox3000
electronic nose. For each sample, 2 mL of pure juice was
introduced to ambient temperature and sealed in vials of 10
mL with a septum. The static headspaces were generated by
the automatic sampler HS-50 (CTC Analytics): pure juices
were heated at a temperature of 50 °C for 15 min. The amount
(150 uL) of the headspace is automatically taken from the
sample vial by a microsyringe Hamilton, thermostatically
controlled at 55 °C in order to avoid condensation phenomena.
The gas phase composed of volatile organic components is then
injected and routed into the two rooms of the sensors by a flux
of synthetic air humidified with the ACU 500 (RH = 20 + 2%,
T = 36 °C) at the constant flow level of 300 mL/min controlled
by the mass flow meter and set at the pressure of 5 psi. It is
necessary to work at a constant level of hygrometry due to
the known sensitivity of Mox sensors to the water (16, 17).
The acquisition time is set at 180 s: for each of the 12 sensors,
the Fox3000 software records the variation of resistance versus
time divided by the original sensor resistance (Ro) in the
carrier gas: AR/Rq = f(t). The default run time between
injections is set at 20 min: this is the time required for the
return to baseline of each sensor. The samples are analyzed
according to a definite uncertain sequence after randomization,
to limit all memory effect. Standards used for the sensors’
calibration are analyzed in the same way except that they are
heated at a temperature of 45 °C for 3 min. Preparation of
these standards is summarized in Table 2.

Optimization of Analysis. The optimum analytical condi-
tions for the generation and analysis of headspace by the HS
50 sampler were determined by a series of 13 experiments,
from an experimental design in which three factors were
varied simultaneously (oven temperature, headspace genera-
tion time, and injection volume). The levels used for each of
the parameters, which were varied, are shown in Table 3. The
experiments were performed using pure juices from Spain,
Israel, and Florida, taken at random in our sampling. We
limited the analyses to these three origins because of the
number of requisite tests (experiments and repetitions) in
relation to the analytical limits of the sampler HS 50 (maximal
number of analysable samples = 50).

DATA ANALYSIS

Mathematical Algorithm and Data Preprocess-
ing. A sensor i in the presence of a complex mixture of
volatile compounds could be at the origin of an odor j,
which produces an electric time-dependent signal: Uj;-
(t). Different mathematical algorithms could be used to
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disengage the analytical information produced by the
sensor array of Mox sensors (1).

max min
_Rij — Ry

ij= i
R;}nn

Rjj is the resistor of sensor i in the presence of a mixture
of volatile j, R{™ is the maximal measured value, R;""
= Ry is the initial resistor of i sensor balances in the
synthetic air, and xj; is the response of sensor i recorded.

In the case of n analyzed samples, we therefore get a
matrix of n lines and 12 columns (sensors). Normaliza-
tion of the data contributes to decreasing the influence
of the volatile compound concentration related to the
sensor responses (18): we have therefore chosen to use
this normalization to differentiate the pure orange juice
qualitatively.

Similarity Index. The similarity index gives an
analytical measure of the difference between two samples
analyzed by the Fox3000 electronic nose (19). After
statistical treatment, samples are classified by groups
or classes of samples. To be classified in the same group,
two compared samples must have an index of <10 units,
an empirical value fixed for the use of the Fox3000
electronic nose. This index is the so-called intragroup
similarity index. Reciprocally, samples differently clas-
sified have an index >10 units, called the intergroup
index, which thus assesses the discrimination power of
the analysis (20).

x 100

similarity index =

Xyjj is the fractional difference measured for sample 1,
Xyij is the fractional difference measured for sample 2,
and N is the number of sensors.

Multivariate Statistical Analysis. The data ob-
tained are treated by multivariate statistical analysis,
more specifically, by principal component analysis (PCA)
and factorial discriminant analysis (FDA). These analy-
ses were done on 42 Valencia pure orange juices taken
from the sampling, which contained 49 samples. The 7
remaining pure juices, representative of the whole of
the countries of origin studied, constitute the supple-
mentary samples: they have been randomly chosen
among the whole juices (2 for Spain and Israel, 1 for
Belize, Florida, and Cuba). These tools enable the
reduction of the dimension of a data set consigned in a
matrix while conserving the maximum information
loaded by the sensors.

PCA is a nonparametric technique often used by
analysts notably in the data treatment in mass spec-
trometry (21). Its utilization concerning semiconductor
sensors is found in the literature (22). PCA enables one
to find some linear combinations of sensor responses
expressing the maximum of the representative variance
of the data. Each linear combination is called a principal
component or an eigenvector. Generally, the maximum
of the variance appears therefore thanks to the two or
three first components: we can thus get from the 12th
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Table 4. Optimization of Analysis
exptt X X2 x3 X¢ X3 Xgd XiXa  XoXs

40 1600 64000 5 25 225 200 1125
40 1600 64000 10 100 150 400 1500
40 1600 64000 10 100 300 400 3000
40 1600 64000 15 225 225 600 3375
50 2500 125000 5 25 150 250 750
2500 125000 5 25 300 250 1500
50 2500 125000 10 100 225 500 2250
50 2500 125000 15 225 150 750 2250
50 2500 125000 15 225 300 750 4500
60 3600 216000 5 25 225 300 1125
60 3600 216000 10 100 150 600 1300
60 3600 216000 10 100 300 600 3000
60 3600 216000 15 225 225 900 3375

O—IOreXomwmnm>
o]
o

2 The 13 experiments of this three-level experimental design.
b X1, temperature (°C). ¢ Xy, time (min). 9 X3, injected quantity (uL).
(Xi)", X1X2, and XzX3 are the interaction factors.

dimension to the 2nd or 3rd ones and thus give a graphic
representation of the information contained in the initial
matrix.

FDA enables one, in addition to the PCA, to take into
account the existence of populations of known samples,
in our case, samples coming from five different coun-
tries. FDA regroups in populations the 42 pure Valencia
orange juices and discriminates them. These popula-
tions could be then used as new references: we can thus
test some new observations of the 7 remaining pure
Valencia orange juices that were not used in the
discrimination (23). The use of these supplementary
samples is a way to test the validity of the classification
of the whole samples with FDA.

Pure juice data were processed with UNISTAT 3.0
software (Megalon and UNISTAT) for statistical treat-
ments. The raw acquisition files from the Fox3000 5.0
software (Alpha-Mos) were computed with Excel97
(Microsoft Corp.) and then exported into UNISTAT 3.0.
PCA and FDA figures were made up with the Power-
Point97 program (Microsoft Corp.).

RESULTS AND DISCUSSION

Developing the Method. Analysis of volatile com-
pounds via sensor arrays depends greatly on the ana-
lytical technique, which enables one to generate them,
the static headspace. Often used in gas chromatography,
this process depends on many parameters to be fixed.
We have first to find the analytical optimal conditions,
the more repeatable headspaces and thus the most
discriminating possible. Few works concerning aroma
sensors relate the use of experimental devices (24) to
optimize analytical conditions. This methodology is a
powerful tool, which considers interaction factors and
allows one to evaluate the potential of sensor arrays in
the discrimination of single-variety pure orange juice
according to the origin of the oranges involved in the
process. The sequence of the experiment device (A—M)
was random in order to limit any memory effects bound
to the constancy of some factors (Table 4).

The intra- and intergroup similarity indices (Si) were
calculated to give a measure of the repeatability and
also the sensor’s powers of discrimination. Values of the
similarity indices (Table 5) show that conditions are
more interesting: we have to choose experiments with
the smallest intragroup similarity indices and the
highest intergroup ones. We fit quadratic models to the
experimental results, the mean intra- and intergroup
similarity indices: We obtain two quadratic equations
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Table 5. Intergroup and Intragroup Similarity Indices

ja ib
Si Si(intra)¢  Si(intra) ¢ S Si(inter)!  Si(enten) ¢
expt (S,S)° (F,F) (1,ne exptl calcd (S,F) (S,1)¢ (F, e exptl calcd
A 4 3 5 4 4 9 10 4 8 8
B 1 2 3 2 1 8 9 3 7 8
C 2 3 2 2 3 9 6 4 6 6
D 2 2 1 2 2 7 5 4 5 6
E 3 3 3 3 4 22 24 4 17 16
F 0 3 1 1 1 15 16 3 11 10
G 6 8 7 7 7 25 22 11 19 19
H 1 6 8 5 4 22 14 11 16 15
| 1 3 2 2 2 11 10 4 8 8
J 3 3 2 3 3 29 15 15 20 19
K 1 3 1 2 2 21 10 12 14 14
L 2 2 2 2 2 19 10 11 13 12
M 2 4 5 4 4 26 10 19 18 21

a Intragroup similarity index (Si) giving a measure of the repeatability for pure Valencia orange juices originating from Spain Si(S,S),
Florida Si(F,F), and Israel Si(1,1). ® Intergroup similarity index (Si) measuring the discrimination of pure Valencia orange juices from the

three different origins studied Si(X, Y): X and Y = S (Spain), F (Florida), I (Israel). ¢ Each sample is analyzed three times. 9 Si(intra) is

the mean of the experimental Sia. ¢ The calculated value is obtained thanks the quadratic equations. f Si(inter) is the mean of the
experimental Si°. 9 The calculated value is obtained via quadratic equations.

Table 6. Sensor Responses for Pure Valencia Orange Juices from Tropical and Subtropical Origins and from
Mediterranean Origin [Values of Maximal Fractional Resistance Change Measured: max(AR/Ry)]

Belize Florida Cuba Spain Israel
max(AR/Ro) max(AR/Ro) max(AR/Ro) max(AR/Ro) max(AR/Ro)

sensord mean® SD¢ CV9(%) meant SD°¢ CVY(%) meanf SD°¢ CV9(%) mean® SD¢ CV9(%) mean’ SD¢ CVY (%)

T30/1 0.426 0.023 5418 0.135 0.099 73.276 0.005 0.013 282.843 0.264 0.105 39.581 0.117 0.086 73.729
P10/1  0.399 0.012 2918 0.401 0.015 3.779 0.416 0.015 3.483 0.481 0.012 2,532 0.516 0.022 4.312
P10/2  0.355 0.009 2566 0.353 0.010 2.777 0.358 0.010 2733 0.381 0.010 2.621 0.405 0.015 3.696
P40/1  0.227 0.007 3.165 0.219 0.009 3.912 0.226 0.008 3.528 0.262 0.007 2.542 0.278 0.012 4.476
T70/2 0513 0.013 2553 0483 0.028 5.757 0.438 0.019 4343 0.493 0.018 3.609 0.483 0.015 3.039
PA2 0.669 0.018 2.713 0.663 0.015 2.260 0.658 0.021 3.164 0.675 0.018 2.687 0.712 0.025 3.478
P30/1  0.996 0.010 0.989 0.891 0.054 6.070 0.600 0.127 21.239 0.999 0.004 0.447 0.934 0.075 7.987
P40/2 0584 0.010 1.734 0.583 0.019 3.228 0.540 0.015 2.833 0.569 0.020 3.478 0.574 0.014 2.452
P30/29 0.940 0.029 3.063 1.000 1.000 0.941 0.049 5.194 0.998 0.006 0.648
pP70/1  0.005 0.001 11.376 0.007 0.003 45.967 0.004 0.003 82.200 0.005 0.001 8531 0.001 0.011 274.331
T40/1 0.084 0.004 4379 0.070 0.003 4.683 0.058 0.004 6.964 0.070 0.004 5.035 0.063 0.004 6.917
TA2 0.087 0.004 4.050 0.080 0.003 3.125 0.072 0.003 3.653 0.074 0.002 3.205 0.069 0.004 5.611

a Names of sensors. P Means of 7 determinations. ¢ Standard deviation. 9 Coefficient of variation. ¢ Means of 8 determinations. f Means
of 8 determinations. ¢ P30/2 given the highest responses to the organic volatile; some of its values equal 1.000 because of the normalization
of the data. " Means of 9 determinations. ' Means of 10 determinations.

to calculate values of similarity indices versus the the complex reaching of equilibrium of generated static
experimental factors set. headspaces. The best intergroup similarity indices are
obtained for the medium temperature of 50 °C in the

Si(intra) = 21.1838256 — 0.87622888X, + case of experiments G and J—M, with Si values >10 for
2 3 the whole countries. The average of Si (S,F), Si(S,1), and

0.2676839X] — 0.00024767X; — 0.84938838X, — Si(F,l) is higher for experiment J: By comparing
0.01617737X§ — 0.04234964X, + 0.01X,X, + experimental values to the calculated ones, we conclude

0.00232416X.X the validity of the experimental design. We have then
' 23 chosen this one to set the analytical conditions and to

T — do all of the analyses: generation time, 15 min; tem-
Si(inter) = 68.8289425 — 8.25964335X, + perature, 50 °C; injected quantity, 150 uL).

0.25360059X2 — 0.0022638X; + 4.35795107X, — Sensor Responses. The kinetics obtained for the

2 _ whole of the pure juice is in sigmoid form. This shape
0.20030581X; — 0.0248787X; — 0.00178593X,X, results from complex phenomena of transfers of matters

and interactions between volatile compounds and the

Si(inter) is the calculated intragroup similarity index, sensors: these interactions result from mechanisms of
and Si(intra) is the intragroup one. X; (1 < i < 3) are adsorption, desorption, competition, and catalysis on the
the influent factors (see Table 3), and NE Xg, X1X,, and surface of sensors. The T30/1 and P70/1 sensors have
X2X3 are the interaction factors (see Table 4). the largest coefficients of variation concerning the

We notice that all of the conditions give good intra- studied origins (Table 6): they do not respond regularly
group Si except for experiments G and H. In the case of to the volatile compounds generated in the headspace,
experiment G, the generation time is certainly too low and we do not take them into account in the results.
(5 min) for the injected quantity (150 uL). Concerning The Mox sensors have very good sensitivity but an
experiment H, repeatability is very good for orange average selectivity: it is difficult to correlate the nature
juices from Spain [Si(S,S) = 1] but not for juices from of the volatile compounds to the sensor responses.

Israel and Florida. These remarks are closely bound to Nevertheless, a comparative study of the curves (Fig-
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Figure 1. Curves of sensor responses in their original acquisition format versus time: pure Valencia orange juices of tropical

and subtropical origins.

ures 1 and 2) shows different kinetics, which can lead cross except for the Florida pure orange juices. We note
one to think there is a real discrimination of the pure also that the curves for sensors P10/2 and T70/2 do not
juice. The kinetics of the P10/1 and T70/2 sensors never join for the pure juices of Israel and Spain (Figure 2),
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Figure 2. Curves of sensor responses in their original acquisition for
origin.

contrary to those coming from Cuba, Belize, and Florida
(Figure 1). Intersection occurs in a time interval be-
tween 100 and 125 s: We also note here that these
qualitative differences can induce characteristics which,
by hypothesis, can lead to an ordering of the pure juices
as a function of their geographical origins.

Analysis of Variance. Analysis of variance to one
factor (ANOVA-1) has been performed to evaluate the
power discrimination of the 12 sensors used; for each
of them, the mean responses measured have been
studied on the five following groups: Cuba, Spain,
Israel, Belize, and Florida. Table 7 contains information
on the degrees of freedom, sum of squares, and mean
squares. The total variance of the dependent variable
is partitioned into the explained part (intergroup vari-
ance) and the unexplained one, expressed in the residu-
als (intragroup variance).

Analysis of Table 6 allows us to eliminate some
sensors: P70/1, because of a probability value of 0.14;
and P40/2, for which the intragroup sum of squares is
more important than the intergroup one. The T30/1
sensor has the largest coefficients of variation concern-
ing the studied origins (Table 6): it does not respond

mat versus time: pure Valencia orange juices of Mediterranean

regularly to the volatile compounds generated in the
headspace, and we do not take it into account in the
results. Furthermore, sensor T30/1 has a large intra-
group value, 0.227145, calculated in Table 7.
Principal Component Analysis. After the first
process of PCA, we have eliminated sensor P30/2, which
gave redundant information, measured by its correlation
coefficient, to improve the discrimination of the samples
during the second process PCA. Therefore, the PCA of
the data was done with the eight remaining sensors.
The first two main components PC1 and PC2 give 93.0%
of the total expressed variance, with 53.5 and 39.5%,
respectively (Figure 3). We consequently hypothesize
that descending from the eighth dimension to the
graphic one (second dimension), almost all of the
information contained in the raw data matrix is pre-
served and that the graph is representative of the
sample set. The matrix of eigenvectors in Table 8 show
that the PC1 axis is mainly built by sensors PA2, P40/
1, P10/1, and P10/2 and that the axis PC2 is mainly
formed by T40/1, T70/2, P30/1, and TA2. The variance
expressed on these axes is almost equidistributed (about
53 and 40%), and we thus admit that we have to
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Table 7. ANOVA

prob-
sensor  variance yx2a  dfe MSe Fd ability

P10/1 intergroup 0.099920 4 0.024980 94.01571 <0.05
intragroup 0.009831 37 0.000266
total 0.109751 41

P10/2 intergroup 0.018396 4 0.004599 35.56981 <0.05
intragroup 0.004784 37 0.000129
total 0.023180 41

P40/1 intergroup 0.024414 4 0.006104 72.76861 <0.05
intragroup 0.003103 37 0.000084
total 0.027517 41

T70/2 intergroup 0.021330 4 0.005332 14.86961 <0.05
intragroup 0.013269 37 0.000359
total 0.034599 41

PA2  intergroup 0.017395 4 0.004349 10.81053 <0.05
intragroup 0.014884 37 0.000402
total 0.032279 41

T40/1 intergroup 0.002761 4 0.000690 47.34899 <0.05
intragroup 0.000540 37 0.000014
total 0.003301 41

P30/1 intergroup 0.820665 4 0.205166 41.18096 <0.05
intragroup 0.184337 37 0.004982
total 1.005002 41

TA2 intergroup 0.001643 4 0.000411 43.94914 <0.05
intragroup 0.000346 37 0.000009
total 0.001989 41

T30/1 intergroup 0.790797 4 0.197699 32.20359 <0.05
intragroup 0.227145 37 0.006139
total 1.017942 41

P70/1 intergroup 0.000260 4 0.000065 1.83797 0.14
intragroup 0.001315 37 0.000036
total 0.001575 41

P30/2 intergroup 0.034463 4 0.008616 13.03925 <0.05
intragroup 0.024448 37 0.000661
total 0.058911 41

P40/2 intergroup 0.008729 4 0.002182 8.49438 <0.05
intragroup 0.009505 37 0.000257
total 0.018234 41

a Sum of squares. ? Degree of freedom. ¢ Mean square. 9 Fisher
value.

Table 8. Matrix of Eigenvectors: Coefficients of
Correlation

principal components

sensor PC1 pC2
P10/1 0.46 —0.16
P10/2 0.47 -0.11
P40/1 0.47 —0.10
T70/2 0.24 0.47
PA2 0.44 0.00
P30/1 0.28 0.41
T40/1 0.03 0.55
TA2 -0.14 0.52
variance? (%) 53.5 39.5
cumulative® (%) 53.5 93.0

a Percent of the variance expressed on the two principal
component axes. ® Cumulative variance.

consider the distribution of the samples in the same way
according to PC1 and PC2 axes.

PCA allowed us to constitute five groups of samples.
We propose to explain this constitution thanks to their
relative position to the main components and initial
variables. We studied the two following distances: the
distance between samples and the distance samples/
variables. The five trained groups are representative of
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the juice orange origin countries: Belize, Florida, Cuba,
Spain, and Israel.

There is at least a value of max(AR/Ry) that charac-
terizes a juice according to its country of origin: con-
cerning Cuba, the sensor value of P30/1, 0.600 unit, is
distinctly below those registered for the other countries
(0.890, 0.934, 0.996, and 0.999). For the pure juices of
Florida, the value 0.890 of sensor P30/1 differentiates
also from the other values. Concerning the pure juices
of Spain and Israel, the sensor P10/1 responds more
strongly (0.481 and 0.516, respectively). Note that for
Israel, the middle value of PA2 is the only one >0.700.
These characteristics may therefore explain a regroup-
ing of the samples according to their country of origin
thanks to the sensor array. The PC1 axis induced a
separation between the juices of Spain and Israel,
positively correlated, and Belize, Cuba, and Florida,
negatively correlated. The pure juices from Israel and
Spain are therefore bound to the sensors PA2, P40/1,
P10/1, and P10/2. Concerning juices from Belize, Florida,
and Cuba, the P10/1 values measured are near 0.400
(0.399, 0.401, and 0.406), whereas those measured for
juices from Spain and Israel are around 0.500 (0.481
and 0.516, respectively). Concerning sensors P40/1, P10/
2, and PA2 the raised values are always more elevated
for the countries of the Mediterranean area. Although
not selective, sensors P10/1 and P10/2 preferentially
respond to hydrocarbons compounds; the volatile frac-
tion, including this chemical family, must differ quali-
tatively and quantitatively according to the oranges’
climatic area, Mediterranean or not.

Factorial Discriminant Analysis. FDA allowed us
to classify the samples already known according to their
origin. The trained groups concern the Mediterranean
countries of Spain and Israel as well as the tropical/
subtropical countries of Belize, Cuba, and Florida. All
of the pure orange juices were classified correctly in
their respective group. The whole of the variance
expressed by the two factorial axes is 98.3% (Figure 4):
this value, almost 100%, indicates that all of the
information is conserved and that the graphic repre-
sentation is an accurate portrayal of the data relative
to the pure juice of orange. The expressed variance is
not equally distributed on the two first factorial axes:
axis 1 carries the maximum of the variance, 87.2%,
whereas the FD2 axis carries 11.1% of the variance.
Nine-tenths of the information is therefore reached by
the FD1 axis: the FD1 axis is mainly formed by the
variables PA2, P40/1, P10/1, and P10/2. These sensors
permit a very good separation of the groups according
to their geographical adherence: The countries of
Mediterranean origin, Spain and Israel, are regrouped
and negatively correlated with the FD1 axis, whereas
those of tropical and subtropical origins are positively
correlated. The FD2 axis induced a separation of the
pure orange juice country according to the sensors P30/
1, T70/2, T40/1, and TA2. Table 9 gives the Mahalanobis
distances between the five groups. Sensor P10/1 permits
good discrimination of the pure orange juice: its re-
sponse is ~0.400 for the samples of tropical and
subtropical origin, whereas the response reaches 0.500
for those of Mediterranean origin.

The classification of the seven supplementary samples
is correct: all were placed in the groups corresponding
to their origin. The relaxing pattern about the clas-
sification is therefore robust and could be extended to
the classification of other supplementary samples.
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Figure 3. PCA of the data set counting 42 samples of pure Valencia orange juices. B, Belize; F, Florida; S, Spain; C, Cuba; I,
Israel. Oranges were harvested in 1997—1998. Boldface letters indicate samples made from oranges harvested in 1996—1997.
Variance of the two first principal components: PC1, 53.5%; PC2, 39.5%.
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Figure 4. FDA of the data set counting 49 samples of pure Valencia orange juices. B, Belize; F, Florida; S, Spain; C, Cuba; I,
Israel. Lower case italic letters indicate the seven supplmentary samples from these countries. Variance of the two first factorial

components: FD1, 87.2%; FD2, 11.1%.

Calibration. The analytical conditions for the dis-
crimination of pure orange juices from different origins
have been determined. Sensor drift is one of the main
criticisms in the use of electronic noses at this time.
Calibration must be now employed for long-term con-
fidence in results. Each of the electronic noses propose

different ways to calibrate the sensor arrays equipping
their apparatus: one of the difficulties in performing
the calibration comes from the simultaneous use of
different kinds of sensors, which generally drift nonlin-
early. Alpha Mos proposes a calibration performed with
mathematical algorithms, which compensate automati-
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Figure 5. Calibration of pure orange juices from Spain, Israel, Cuba, Florida, and Belize. The left-hand side shows the uncalibrated
results. The right-hand side gives the calibrated results from the Fox3000 software calibration process. The clusters represent
the five groups of origin: SPA, Spain; ISR, Israel; CUB, Cuba; FLO, Florida; BEL, Belize. Single capital letters are the cross-
validating samples clustered around the groups before and after the calibration of the sensors.

Table 9. Mahalanobis Distances

Cuba Israel Spain Belize Florida
Cuba 0
Israel 16.94 0
Spain 16.72 2.93 0
Belize 7.94 18.57 17.07 0
Florida 4.01 17.66 16.76 3.96 0

a Matrix of Mahalanobis distances between the five groups
represented on the FDA diagram (see Figure 4).

Table 10. Supplementary Samples

sample? recognized group % of recognition®
B yes BEL 100.00
11 yes ISR 100.00
12 yes ISR 100.00
C yes cuB 93.44
F yes FLO 100.00
S1 yes SPA 99.09
S2 yes SPA 98.07

a Supplementary samples labeled as B for Belize, 11 and 12 for
Israel, C for Cuba, F for Florida, and S1 and S2 for Spain. ® Percent
of recognition calculated by Fox3000 software. BEL, ISR, CUB,
FLO, and SPA are the names of territories represented on Figures
5 and 6, meaning, respectively, Belize, Israel, Cuba, Florida, and
Spain.

cally for the sensor drift. This process is done by the
Fox3000 software. Chemical standards are used for this
calibration: These compounds are associated with the
sample matrix being analyzed. They are generally found
among major chromatographic peaks detected in the
aroma of orange juices, given by literature references;
we have chosen six compounds: guaiacol, o-pinene,
furfural, limonene, ethyl butyrate, and y-butyrolactone.
Pure products are used, as calibration standards must
react similarly to the samples: the sensor responses get
the same response curve with the next speed of re-
sponse. Analytical conditions have then been set to fit
these conditions. To build the calibration model, we have
to train the system. Analyses are repeated 10 times: the
repeatability of the measurements over time was as-
sessed for a 6-week period. The combined repeat mea-
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Figure 6. Test of the calibration with the supplementary
samples. The territories of the diagram represent the five
groups of origin after the calibration of the sensors. Country
codes are the same as in Figure 5. Supplementary samples
are tested for the validation of the database: two from Israel
labeled I, two from Spain labeled S, and one each from Belize
(B), Cuba (C), and Florida (F). These samples are positioned
around the five groups of countries or state.

surements were used to develop and cross-validate the
models used to define different qualitative territories
in a discriminant function analysis plot (Figure 5).
When 10 analyses of samples and calibration standards
have been run, the database and the calibration model
are built: The results obtained confirm the efficiency
of the calibration model; the right-hand diagram shows
the calibration results, where territories are further
defined with reference to repeat measurements on the
chemical standards. In this diagram, the cross-validat-
ing samples were clustered around the correct groups.
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The selection of the optimal calibration standard is
automatically calculated: limonene and o-pinene have
been selected; these standards are then used, 1 week
later, to analyze the seven unknown samples that have
been applied to the calibration mode. During these blind
tests, all of them have been recognized, with a percent-
age of recognition close to 100% in Table 10; Figure 6.

Conclusion. The use of the sensor array showed a
real potential for the discrimination of pure orange
juices according to the origins of the oranges involved
in the process. The optimization of the headspace
generation produced the best conditions to analyze pure
orange juices with the electronic nose. There are,
therefore, in the generated volatile fraction, compounds
that can be used as origin tracers relative to the array
sensor responses. Recent results showed that carotenoid
profiles of Valencia orange juice by HPLC allow one to
differentiate them as a function of the origin of oranges.
However, the sensor array permitted a better discrimi-
nation of the Belize and Cuba groups. After the calibra-
tion of the sensors, we then built a database aiming to
classify pure Valencia orange juices from five different
origins. The advantage of the electronic nose is the
absence of sample preparation, which allows all of the
samples’ properties to remain intact. Thus, we have
showed in this paper the interest of a nonseparative
method compared to classical analyses.

ACKNOWLEDGMENT

We thank L. Lapierre, Couecou Society, and M.
Bouyer, Fruival Society, for authentic orange juice
samples. We gratefully acknowledge the ANRT for
providing facilities (Dos. 556/97). We also thank T.
O'Neill for assistance in English corrections, M. Sergent
for help in the choice of the experimental design, and
P. Mouly for sharing his knowledge about the orange
juices.

LITERATURE CITED

(1) Gardner, J. W.; Bartlett, P. N. A brief history of
electronic noses. Sens. Actuators, B, Chem. 1994, 18—
19, 211-220.

(2) Strike, D. J.; Meijerink, M. G. H.; Koudelka-Hep, M.
Electronic noses—A mini-review. Fresenius’ J. Anal.
Chem. 1999, 364, 499—505.

(3) Mielle, P. Une technique de pointe au service du controle
de la qualité aromatique. Technoscope Biofutur. 1998,
174, 2—-10.

(4) Aishima, T. Aroma discrimination by pattern recogni-
tion analysis of responses from semiconductor gas sensor
array. J. Agric. Food Chem. 1991, 39, 752—756.

(5) Bartlett, P. N.; Elliott, J. M.; Gardner, J. W. Electronic
noses and their application in the food industry. Food
Technol. 1997, 51, 44—48.

(6) Schaller, E.; Bosset, J. O.; Escher, F. “Electronic Noses”
and their application to food. Lebensm.-Wiss. -Technol.
1998, 31, 305—316.

(7) Mielle, P. “Electronic Noses—toward the objective
instrumental characterization of food aroma. Special
issue on flavour perception. Trends Food Sci. Technol.
1996, 7 (12), 432—438.

Steine et al.

(8) Barnett, D. The electronic nose and food assessment.
Food Aust. 1999, 51 (6), 226.

(9) Bazemore, R.; Rouseff, R.; Sims, C. Comparison of fresh
squeezed orange juice analysis by “Electronic nose”,
sensory taste panel and GC FID. Presented at the
Olfaction and Electronic Nose, 3rd International Sym-
posium, Toulouse, France, 1996.

(10) Bazemore, R.; Rouseff, R. Discrimination of thermally
treated orange juices by an electronic nose equipped
with organic polymer sensors. Semin. Food Anal. 1998,
3, 59—66.

(11) Shaw, P. E.; Moshonas, M. G. Quantification of volatile
constituents in orange juice drinks and its use for
comparison with pure juices by multivariate analysis.
Lebensm.-Wiss. -Technol. 1997, 30, 497—501.

(22) Tillotson, J. E. What do consumers want in fruit juice
beverage quality? In Report of Congress IFU; XII
International Congress of Fruit Juice, Interlaken, Swit-
zerland, May 20—24; International Fruchtsaft Union:
Paris, France, 1996; pp 57—64.

(13) Mouly, P.; Gaydou, M.; Lapierre, L.; Corsetti, J. Dif-
ferentiation of several geographical origins in single-
strength Valencia orange juices using quantitative
comparison of carotenoid profiles. J. Agric. Food Chem.
1999, 47, 4038—4045.

(14) Fournier, J. B.; Martin, Y.-L.; Fourel, F.-P.; Martin, G.-
B.; McManus, H. J. D. Characterization of the geo-
graphic origin of orange juice from Florida, Brazil and
Israel—A combined isotopic and trace element method.
Report of Congress IFU; XII International Congress of
Fruit Juice, Interlaken, Switzerland, May 20—24; In-
ternational Fruchtsaft Union: Paris, France, 1996; pp
215—223.

(15) Saunt, J. Citrus Varieties of the World; Sinclair Inter-
national Limited: Norwich, U.K., 1990; pp 15—31.

(16) Clifford, P. K.; Tuma, D. T. Characteristics of semicon-
ductor gas sensors. |. Steady-state gas response. Sens.
Actuators 1983, 3, 233—255.

(17) Yamazoe, N.; Fuchigami, J.; Kishikawa, M.; Seiyama,
T. Interactions of tin oxide surface with oxygen, water
and hydrogen. Surf. Sci. 1979, 86, 335—344.

(18) Gardner, J. W. Detection of vapours and odours from a
multisensor array using pattern recognition. Part 1.
Principal component and cluster analysis. Sens. Actua-
tors, B, Chem. 1991, 4, 108—116.

(19) Alpha Mos. Fox2000—4000 Software Manual 5.01; Tou-
louse, France, 1996; pp 78—79.

(20) Gower, J. C.; Legendre, P. Metric and Euclidean proper-
ties of dissimilarity coefficients. J. Classification 1986,
3, 5—48.

(21) Shurmer, H. V.; Gardner, J. W. Odour discrimination
with an electronis nose. Sens. Actuators, B, Chem. 1992,
8, 1-11.

(22) Hibbert, B. Data analysis of multi-sensor arrays. Elec-
troanalysis 1998, 10, 1077—1080.

(23) Tomassone, R. Comment Interpréter les Résultats d'une
Analyse Factorielle Discriminante? INA-PG, ITCF: Paris,
France, 1988.

(24) Roussel, S. CEMAGREF. Optimisation des mesures:
I'influence determinante des parameétres, Nez électron-
iques et capteurs d'ardmes; ADRIA Formation Interen-
treprise: Paris, France, 1998.

Received for review December 8, 2000. Revised manuscript
received May 2, 2001. Accepted May 7, 2001.

JF0014664



